INFOMDA1 Review Notes
  • GitHub

    SLV Final Exam

    0. SLV General →
    1 Resources - 考前必打开网页 →
    1.1 SLV Course Homepage - Example Codes →
    1.2 ChatGPT - Answers →
    1.3 Example Exam - Question Types, For Review →
    1.4 Cheatsheets →
    2. Exam Questions →
    2.1 Theoretical - Data Visualization →
    2.2 Theoretical - Improving Plot, Explaining →
    2.3 Theoretical - Energy Prediction →
    2.4 Practical - Decision Rule →
    2.5 Practical - LASSO →
    3. Content →
    3.1 Data Wrangling - 数据类型,新建,摘要 →
    3.2 Graphics - 绘图 →
    3.3 EDA - 查看、探索数据 →
    3.4 Linear Regression - CI, MSE, Split, Cross Validation →
    3.5 Classification - KNN, Confusion Matrix, LR, LDA (Used For Predicting Categorical Variables) →
    3.6 Classification Evaluation - Confusion Matrix, LR, LDA, Classification Trees, Random Forest →
    3.7 Nonlinear Regression - Prediction Plot, Poly →
    3.8 Ensemble Methods - Bagging, RF, Boosting, Xgboost →